

Nuclear Energy for Electricity

Ted Quinn, <u>tedquinn@cox.net</u> Past President, American Nuclear Society November 8, 2014 Anaheim, CA

Today's Discussion

- Background
 - -Electricity Supply
 - -Fukushima
 - -Uranium Fuel
 - -Plant Design
 - -Land Use
 - -Public Safety
 - -Plant Security
- Performance
 - -Capacity Factor
 - -Production Costs
 - -Fuel Costs
- Status and Outlook
 - -World Electricity Generation
 - -Demand Growth
 - -U.S. and California Generation
 - -License Renewal for Existing U.S. Plants
 - -Potential for New U.S. Plants
- Challenges

A World of Extremes

World Net Electricity Generation By Region 1990-2035, trillion kilowatt-hours

Sources: Energy Information Administration's 2011 International Energy Outlook, International Atomic Energy Agency

Updated: 9/11

World Overview Energy-related Carbon Dioxide Emissions

- Global emissions
 - Mainly from power sector
 - 14% increase in emissions by 2020
 - 19% increase in emissions by 2030
- United States ranked #1 contributor- now #2
- China ranked #1 contributor

Potential supply-side solutions to the Energy Problem (Steve Chu list) •Oil

- •Coal, tar sands, shale oil, ...
- Gas
- Fission (nuclear)
- Wind
- Solar photocells
- Bio-mass

Reactors Under Construction or Planned

Sources: International Atomic Energy Agency and project sponsors for units under construction and World Nuclear Association for units on order or planned.

*Chart includes only countries with units under construction. **Countries planning new units are not all included in the chart.

Planned units = Approvals, funding or major commitment in place, mostly expected in operation within 8-10 years.

China - Challenge and Strategy

- Unbalanced Energy Supply Structure
- Pressure from GHG Emission
- Risks of Oil and Gas Supply
- Sustainable increase of demand on electricity
- Public challenges of nuclear due to the Fukushima accident

Fuqing Plant Site in China (six units)

Background

-Uranium Fuel

- -Plant Design
- -Land Use
- -Public Safety
- -Plant Security

Uranium Fuel – Processing

- Mining and Milling → Uranium Oxide
- Conversion and Enrichment
 - Uranium Hexafluoride
 - Isotopes of Uranium U-238 and U-235
 - U-238 accounts for more than 99 percent
 - U-235 less than 1% of uranium by weight (1% is increased to 3-5%)

Uranium Fuel – Ceramic Pellets

Uranium fuel pellets are the size of a fingertip.

Contain as much energy as:

- 17,000 cubic feet of natural gas
- 1,780 pounds of coal
- 149 gallons of oil

Quarter for scale purpose only

Uranium Fuel – Fuel Rods and Assemblies

- Pellets are placed and sealed inside metal tubes called fuel rods
- Rods are grouped in bundles and form a fuel assembly – 14 feet tall
- Multiple assemblies power a reactor for 36 to 54 months
- Refueling occurs about every two years

Uranium Fuel – Nuclear Fission Process

The heat turns into steam which drives a turbine to produce electricity.

Fission Fragment

Uranium Fuel – Used Fuel Storage

Used fuel is a solid material safely and securely stored at nuclear plant sites.

- Step 1 Spent Fuel Pool
- Step 2 Dry Cask Storage

Uranium Fuel – Availability

Source: British Nuclear Energy Society, September 2005

Glenn T. Seaborg – Nobel Laureate from CA

Madame Marie Curie --- 1st Nobel Prize 1911

Background

-Uranium Fuel

-Plant Design

-Land Use -Public Safety -Plant Security

Plant Design – How a Nuclear Plant Works

Pressurized Water Reactor

Plant Design – Safety Systems

- Nuclear power plants have multiple back-up safety systems, including automatic shutdowns
- Multiple safety barriers containment

Plant Design – Addressing the Environment

- Air
 - No emission of greenhouse gases
 - U.S. plants displace 680 million metric tons of CO2/yr
 - Equivalent to 131 million passenger cars/yr
- Water (once-through cooling)
 - Marine environment protective measures
- Solid Waste
 - Used fuel safely and securely stored, fully contained
 - Long-lived

Plant Design - Life Cycle CO2 Emissions Analyses

Plant Design – U.S. Emission-Free Power Sources

Plant Design – Intake and Discharge Structures

"Marine environment effects are fully mitigated."

Coastal Commission

Plant Design - Environmental Care

Wheeler North Giant Kelp Reef

171-acre artificial reef off San Clemente

Adds significant marine habitat

Creates marine habitat for as many as 50 varieties of fish and invertebrates

Increases recreational opportunities

Cost - \$46 million

Plant Design - Environmental Care

Creates more than 150 acres of coastal wetlands

Restores tidal flows, natural habitat and vegetation

Protects the wetlands from flood-borne sediment buildup

Significantly increases fish and wildlife

Cost - \$90 million

San Dieguito Wetland Restoration

Fukushima Daiichi (Plant I) March 2011 Unit I - GE Mark I BWR (439 MW), Operating since 1971 Unit II-IV - GE Mark I BWR (760 MW), Operating since 1974

Lessons Learned by Japan

• Earthquake design basis adequate

 Tsunami design basis and emergency planning insufficient for NPP and other key infrastructure

 Must diversify, increase and secure onsite power supply to avoid core damage

U.S. Industry Post-Fukushima Actions

Background

- -Uranium Fuel
- -Plant Design

-Land Use

-Public Safety -Plant Security

Land Use – Requirements

Land required for 1000 megawatts:

-Nuclear ... 1,000 acres (operates at 90% capacity factor)

-Solar ... 10,000 acres

-Wind ... 50,000 acres

- Both wind and solar are intermittent resources (operate at approx. 30% capacity factor)
- Need gas-fired back-up for grid reliability

Background

- -Uranium Fuel
- -Plant Design
- -Land Use
- -Public Safety

-Plant Security

Public Safety – Top Priority

Safety is highest priority for nuclear power plants.

- Power plants have multiple barriers
- Redundant and diverse plant safety systems
- NRC is effective regulator
- Additional industry oversight
- Highly-trained personnel and licensed operators
- Procedural compliance

U.S.-Style Nuclear Reactor—Defense in Depth

Background

- -Uranium Fuel
- -Plant Design
- -Land Use
- -Public Safety
- -Plant Security

Plant Security – Extensive Protective Measures

Nuclear plants are among the most secure and safest industrial facilities in the nation.

- Physical security measures multiple access barriers
- Armed security forces
- Plant and perimeter surveillance
- Intrusion detection systems
- Access systems
- Coordination with federal, state, local and intelligence authorities
- NRC inspections and drills

Performance

-Capacity Factors (90% industry average)
-Production Costs
-Fuel Costs

Performance – Fuel Cost Impact

Status and Outlook

- - Demand Growth
- -U.S. and California Generation
- -License Renewal for Existing U.S. Plants
- -Potential for New U.S. Plants

Status – United States

Nuclear Power Plants

Status – California Portfolio Mix

Nuclear Generation

Hydro Generation

Fossil Generation

Renewables: Solar, Wind, Geothermal, Biomass

Outlook – New U.S. Plants

' New Reactor Projects In The U.S.

Vogtle 3 & 4

- **2,200** workers now on the project
- 3,000 during peak construction
- 600 to 800 permanent jobs when the new reactors are operating

V.C. Summer 2 & 3

- 1,000 workers now on the project
- 3,000 during peak construction
- 600 to 800 permanent jobs when the new reactors are operating

Challenges

-Overview -High Capital Costs

-Facts About Used Fuel

Challenges - Overview

- High capital costs (\$10-15 billion)
- Used fuel issue
- Availability of nuclear qualified components
- Availability of skilled personnel
- Lengthy licensing and construction schedule
- Cost and schedule performance
- Anti-nuclear resistance/concerns/misunderstandings

Summary

Current plants:

- Operate safely
- Continued operation is cost-effective
- Baseload plants have a high-capacity factor
- Environmental benefits essentially zero greenhouse gas emissions
- Used fuel fully contained and safely stored

Summary

Potential for new U.S. plants:

- Attractive attributes
 - -Avoids GHG emissions
 - -Baseload power 24/7 with high reliability
 - -Relative security/stability of fuel supply
- Significant challenges
 - -High capital cost
 - -Understanding the used fuel issue